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Goals

Implicit:

e Noisy k-sparse vector z € C?

e Parameter ¢
We provide:

e Matrix @

e Decoding algo D with D(®x) =z ~ .
Goals:

e Uniformity: One (randomly constructed) ® works for all s
e Number of measurements: kpoly(log(d),1/¢) rows in @

e Runtime: of D is poly(k,log(d),1/¢) < d (faster variant).

o Error: |[Ef|, = ||z — [, < w [ — ||, = w [ Eopt |l
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Error—Alternative Characterization

|7 = 2lly < == llow — =l

implies
o If z(;y = 1/j (“l-compressible”), then

|z5 — &__w < (1+ m\v |28 — &:w



Role of Randomness

Signal is worst-case, not random.

Two possible models for random measurement matrix.



Random Measurement Matrix ‘“for each”
Signal

We present coin-tossing algorithm.

\

Coins are flipped.

R Adversary picks worst signal.

Matrix ® is fixed. \

Algorithm runs

e Randomness in @ is needed to defeat the adversary.

4



Universal Random Measurement Matrix

We present coin-tossing algorithm.

/

Coins are flipped.

}
Matrix ® is fixed.

'

Adversary picks worst signal in ¢*.

/

Algorithm runs

e Randomness is used to construct correct ® efficiently
(probabilistic method).



Why Universal Guarantee?

Often unnecessary, but needed for iterative schemes. E.g.

e Inventory x1: 100 Thomas, 5 Barbie, 2 Lego, 30 back-orders for
TSP .

e Sketch using ®: 98 Thomas, —31 TSP

e Manager: Based on sketch, remove all Thomas and Barbie;
order 40 TSP

e New inventory xo: 0 Thomas, 0 Barbie, 2 Lego, 10 TSP, ...
xo depends on measurement matrix ®. No guarantees for ® on x».
Too costly to have separate @ per sale.

Today: Universal guarantee.



Compressed Sensing

e Matrix with Restricted Isometry Property
<& E.g., random Gaussian matrix

e Decoding by linear programming



Restricted Isometry Property

Matrix ® with d columns has the k-RIP if

01

Ok

e Any submatrix of k columns has < 2.

Theorem. [Donono; Candes-Tao; Rudelson-Vershynin]
1. A Gaussian matrix with O(klog(d)) rows has k-RIP.

2. A random row-submatrix of the DFT with O(klog*(d)) rows
has k-RIP. (Open: Improve 4 to 1.)

Theorem. [Donoho; Candes-Tao|
If ® has (2k)-RIP, and = approx’ly k-sparse, then solve
min [|Z][,

such that &z = .

Use Linear Program of size d.



Linear Program

Want to solve:
min ||z

such that: &z = oz

Write x = p — n as difference of positive and negative parts. Then

min(pg +p1 + -+ pa—1) + (no +n1 + - +ng—1)
such that: ®(p —n) = dx

p=>0

n >0



Advantage of (zaussian

Measurements are oblivious to basis of sparsity.

If U is orthonormal and ® is Gaussian, then U® is also Gaussian.
e Measure x; get Px.

e Decide a good U:

— x = Uy, where y is sparse plus noise.
e Pretend that we’ve measured y by Gaussian U .
E.g.,
e Make few measurements of Mars-scape.

e Later, decide on a basis that’s good for compressing
Mars-scapes.
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Gaussians have RIP

Proot sketch; slightly worse bounds than promised.

Let A be a O(klog(d)) x d random Gaussian matrix normalized so

that columns have expected Euclidean norm 1. Then, for all x,

|Az]| = |z].
Proof overview (from Vershynin):
e Cover ball with e-net, N, of size 2°(4), (Omitted.)

e Approximate x by y € N.

e Show theorem holds for each y € N except with prob %.
(CLT; JL)
e Need only easy upper bound for || A(zx — y)|| < O(||lx — y||)-

e Take union bound over all y in N.
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RIP suffices for LP decoding

Suppose ®x# = &z and :bﬁ@m:H is minimal. From

[Candeés-Romberg-Tao:]
Let

e T be support of biggest k£ terms and 1y be
k+ M =k + 4k = 5k terms.

o n=k""?|z - k|-

o h=z% —z. (Want ||hl, < O(n).)
Three ingredients:

e 1 feasible and :&%:H minimal implies :?ﬁm
5 < O (Il + ).
o gy, ll, < Om).

o ||hr,

12

support of top

1 m :\@MJQ__H + /\Mi



¢! Concentration

Theorem: x feasible and :&% :H is minimal implies

Ihrgl, < Ihally + O(VEn).
Proof:
__Hﬂo__u o __NSJO__H — :&%% 1 + :Dﬂoo 1
< |lzr, + hryll; + :&ﬂ% + hre
= lz+ Al = [l=7,
< &:H
— MH.mJo__HAT :&ﬂ% 1
so || hgl, < llhny Iy + O(VEn).
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Bounding the Tail

Theorem: :D%S:w <O (||h1y, |l5 + 1)

Proof: Markov: j - [y|;y < ||yll1, so |hrey) < :\Sa /7.

Thus

2
|, /M.

d
1
Y 7 < ||z
j=M+
Combined with ¢! Concentration,

|, I < Oz, Il /M +m)%) < O((lhz, [l + 0)?).
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Bounding the Head

Theorem: ||hr, |, < O(n).

Proof: For 57 > 0, let T; be the support of j’'th largest set of M
terms after the first k.

0 = ||®@" —a)|, = [®h],
> :nHuDﬂoH:w| M@Dﬁ.
Jj=>2 9
> :e\yﬁ:zw IMU:@?D. 2
Jj=>2
~ :DﬂoH__w|M:Dﬁ.:w.
Jj=>2

Need to bound } _;, |, :w above.
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Bounding the Head

Each term in T} is smaller than the average term in T},

2 2 :
gﬂiL < :Dﬁ.:H /M, so :Dﬁ.i:w < :DHQ_:H /M. (Note: Tight 1/M
factor in 1 to 2 norm achieved by j to j + 1.) Thus

MU :\Sw :w < MU :\Sw :H \/\@

Jj=>2 j=>1
:bﬂm H\( M
A, [l /VM + O(n)

VE/M(|[hr, ||, + O())

V \A\iA__DﬂS :w + QASVV

Thus :Dﬂg__w < V \A\ _Dﬂ: :w + dv AH\MVA__\SJS :w + dv“ S
:\SJS__M QA v
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HHS algorithm

Co-design matrix special and decoding algorithm.

Faster decoding: time k?poly(log(d)/¢).
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Fast Estimation

Have:

e Set A of positions in signal .

e Measurements ®x, for random DFT-row-submatrix &.
Want:

e Estimate x4 for x4 with

o [|Za —zally < [l —@ally + &2 |z — 24l
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Estimator

Ta = &% (Pz) (Least squares).

Get: For all z, ||®z|, < O(||z||, + k=12 ||z]],)-
Proof of correctness: Similar to Compressed Sensing.
kpolylog(d) x kpolylog(d) matrix; time k*polylog(d).
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On to Identification

How to find good candidate set of positions?
e [solation

e Noise Reduction
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HHS Algorithm, Overview

e Assume limited dyanmic range: ||z, < d°8) || Eop|,.
<& Previous work provides preprocessing step.

e While ||z||, > (¢/Vk) || Eoptll;, reduce ||z|, by factor 2.
<& lIdentify some spikes
< Estimate values.

& ... reduce ||x||, by a constant factor.
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HHS

Our focus:
e ~ ¢ spikes with magnitude ~ 1/t
o Noise ||[Eopsl; = ||V]|; = 1.

(Try all ¢’s and t’s in a geometric progression.)
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Double Hashing

Have: q spikes at magnitude 1/¢; noise 1.
Double hashing:

e Each position goes to 1 group among q.
e Within each group, each position expects to go to t/q groups
among (t/q)?.

(Some log factors suppressed.)
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First Hashing

Have: q spikes at magnitude 1/¢; noise 1.

Throw positions into ~ g buckets, by ®. Repeat log(d) times.
~1
Except with prob e~410g(d) — @v :

e ()(q) spikes are isolated from other spikes

Take union bound over all @v possible configurations of spikes. Get
one spike at 1/t.
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Noise, Part 1

Have one spike at 1/t. Noise?
We'll show || ®Eqpt||; < ||Eoptll;- (Next slide.)

e Property of ®; no union bound over Epy.
e At most n/10 of n buckets get noise more than
(10/7) | Eops|ly & (1/q) [| Eopt |-
Get 1 spike at 1/t and noise 1/gq.

e Need further ¢/t factor of noise reduction.
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Noise, Part I, Illustrated

Throw d positions into n = qlog(d) buckets, by ®.

o Want || ®E ||, < || Eoptll;; we'll show || ®x|, < ||z||, for all x.

e At most n/10 buckets get noise more than
(10/7) | Eopt|ly & (1/q) [| Eopt |-

ot ©
|

R R

— o O

— o O

S = O

S = O
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Second Hashing

Have 1 spike at 1/¢; noise ||v||; < 1/q.
Use r = (t/q)? rows of Bernoulli(q/t).

(1/dg)

[ \ | 1
0010110 1|][1/dq
01 100 01 1]|][1/dg
1 00 1 01 1 0f]1/dq

\l 1 01 10 0 0)]1/dg

\1/dg/
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Second Hashing

Have 1 spike at 1/¢; noise ||v||; < 1/q.

Use r = (t/q)? rows of Bernoulli(q/t).

\H\&Q/
(1 \ |

1/dq
01 100 01 1]|][1/dg
1/dq
\l 1 01 10 0 0)]1/dg

\1/dg/

e Our spike survives ' = r - (q/t) = t/q times.
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Second Hashing

Have 1 spike at 1/t; noise ||v||; < 1/q.
Use 7 = O((t/q)?) rows of Bernoulli(q/t). \H\&@/
(1 \ | v
1/dq
0 100 0 1 1|/|1/dg
1/dg
\l 011 0 0 0)]1/dg

\1/dg/

e Our spike survives r’ = r - (q/t) = t/q times.

e On surviving submatrix, expect r’ - (¢/t) = one 1 per other
column.
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Second Hashing

Have 1 spike at 1/¢; noise ||v||; < 1/q.
Except with prob 1/d® (with cost factor O(log(d))),

e Our spike survives ' =r - (q/t) = t/q times.

e In surviving submatrix, r’ - (¢/t) = one 1 per each other

column.
Take union bound over d spikes and d matrix columns.

For any noise ||v||; = 1/¢, some row gets average noise,
(1/q)/r" = 1/t.

Can recover spike of magnitude 1/t from noise 1/(2t).
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Number of Measurements

Number of measurements: ¢(t/q)*log(d) ~ t*/q, for

e First hashing (g rows)

e Second hashing ((t/q)? rows)

e Bit tests (log(d) rows)

e (Several!l) omitted factors of log(d) and 1/e.

Note: Q\ww — __,w:w > QAIH\M :@ogzuvw — H\\A

So number of measurements is t*/q < k.
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Recap

New compressed sensing/heavy hitter algorithms that get

e Appropriate error
e Universal guarantee
e Optimal number of measurements (up to log factors)

e Decoding time poly(klog(d))
Also

e Efficient pseudorandom constructions suffice.
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