and Faster Variations Compressed Sensing

Martin J. Strauss University of Michigan

Goals

Implicit:

- Noisy k-sparse vector $x \in \mathbb{C}^d$
- Parameter ϵ

We provide:

- Matrix Φ
- Decoding algo D with $D(\Phi x) = \widetilde{x} \approx x$.

Goals:

- Uniformity: One (randomly constructed) Φ works for all s
- Number of measurements: $k \text{poly}(\log(d), 1/\epsilon)$ rows in Φ
- **Runtime:** of *D* is $poly(k, log(d), 1/\epsilon) \ll d$ (faster variant).
- **Error:** $||E||_2 = ||\widetilde{x} x||_2 \le \frac{\epsilon}{\sqrt{k}} ||x_m x||_1 = \frac{\epsilon}{\sqrt{k}} ||E_{\text{opt}}||_1$

Error—Alternative Characterization

$$\|\widetilde{x} - x\|_2 \le \frac{\epsilon}{\sqrt{k}} \|x_k - x\|_1$$

implies

• If $x_{(j)} = 1/j$ ("1-compressible"), then $\|\widetilde{x}_k - x\|_2 \le (1 + \epsilon') \|x_k - x\|_2.$

Role of Randomness

Signal is worst-case, not random.

Two possible models for random measurement matrix.

Random Measurement Matrix "for each" Signal

Matrix Φ is fixed. Coins are flipped. We present coin-tossing algorithm. Algorithm runs Adversary picks worst signal.

Randomness in Φ is needed to defeat the adversary.

Universal Random Measurement Matrix

We present coin-tossing algorithm.

Matrix Φ is fixed.

Adversary picks worst signal in ℓ^1 .

Algorithm runs

Randomness is used to construct correct Φ efficiently (probabilistic method).

Why Universal Guarantee?

Often unnecessary, but needed for iterative schemes. E.g.

- Inventory x_1 : 100 Thomas, 5 Barbie, 2 Lego, 30 back-orders for
- Sketch using Φ: 98 Thomas, -31 TSP
- Manager: Based on sketch, remove all Thomas and Barbie; order 40 TSP
- New inventory x_2 : 0 Thomas, 0 Barbie, 2 Lego, 10 TSP, ...

 x_2 depends on measurement matrix Φ . No guarantees for Φ on x_2 .

Today: Universal guarantee.

Too costly to have separate Φ per sale.

Compressed Sensing

- Matrix with Restricted Isometry Property
- ♦ E.g., random Gaussian matrix
- Decoding by linear programming

Restricted Isometry Property

Matrix Φ with d columns has the k-RIP if

Any submatrix of k columns has $\left|\frac{\sigma_1}{\sigma_k}\right| \leq 2$.

Theorem. [Donono; Candès-Tao; Rudelson-Vershynin]

- 1. A Gaussian matrix with $O(k \log(d))$ rows has k-RIP.
- 2. A random row-submatrix of the DFT with $O(k \log^4(d))$ rows has k-RIP. (Open: Improve 4 to 1.)

Theorem. [Donoho; Candès-Tao]

If Φ has (2k)-RIP, and x approx'ly k-sparse, then solve such that $\Phi \widetilde{x} = \Phi x$. $\min \|\widetilde{x}\|_1$

Use Linear Program of size d.

Linear Program

Want to solve:

$$\min \|\widetilde{x}\|_1$$

such that:
$$\Phi \widetilde{x} = \Phi x$$

Write $\tilde{x} = p - n$ as difference of positive and negative parts. Then

such that:
$$\Phi(p-n) = \Phi x$$

 $\min(p_0 + p_1 + \dots + p_{d-1}) + (n_0 + n_1 + \dots + n_{d-1})$

$$p \ge 0$$

$$n \ge 0$$

Advantage of Gaussian

Measurements are oblivious to basis of sparsity.

If U is orthonormal and Φ is Gaussian, then $U\Phi$ is also Gaussian.

- Measure x; get Φx .
- Decide a good U:

-x = Uy, where y is sparse plus noise.

Pretend that we've measured y by Gaussian $U\Phi$.

E.g.,

- Make few measurements of Mars-scape.
- Later, decide on a basis that's good for compressing Mars-scapes.

Gaussians have RIP

Proof sketch; slightly worse bounds than promised.

that columns have expected Euclidean norm 1. Then, for all x, $||Ax|| \approx ||x||$ Let A be a $O(k \log(d)) \times d$ random Gaussian matrix normalized so

Proof overview (from Vershynin):

- Cover ball with ϵ -net, N, of size $2^{O(d)}$. (Omitted.)
- Approximate x by $y \in N$.
- Show theorem holds for each $y \in N$ except with prob $\frac{1}{4|N|}$. (CLT; JL)
- Need only easy upper bound for $||A(x-y)|| \le O(||x-y||)$.
- Take union bound over all y in N.

RIP suffices for LP decoding

Suppose $\Phi x^{\#} = \Phi x$ and $||x^{\#}||_{1}$ is minimal. From [Candès-Romberg-Tao:]

Let

- T_0 be support of biggest k terms and T_{01} be support of top k + M = k + 4k = 5k terms
- $\eta = k^{-1/2} \|x x_k\|_1$.
- $h = x^{\#} x$. (Want $||h||_2 \le O(\eta)$.)

Three ingredients:

- $x \text{ feasible and } ||x^{\#}||_{1} \text{ minimal implies } ||h_{T_{0}^{c}}||_{1} \leq ||h_{T_{0}}||_{1} + \sqrt{k}\eta.$
- $||h_{T_{01}^c}||_2 \le O(||h_{T_{01}}||_2 + \eta).$
- $||h_{T_{01}}||_2 \le O(\eta)$.

ℓ^1 Concentration

Theorem: x feasible and $||x^{\#}||_1$ is minimal implies $||h_{T_0^c}||_1 \le ||h_{T_0}||_1 + O(\sqrt{k\eta}).$

$$\begin{aligned} & \mathbf{r}_{0}^{c} \big\|_{1} \leq \|h_{T_{0}}\|_{1} + O(\sqrt{k\eta}). \end{aligned}$$

$$||x_{T_{0}}\|_{1} - \|h_{T_{0}}\|_{1} - \|x_{T_{0}^{c}}\|_{1} + \|h_{T_{0}^{c}}\|_{1}$$

$$& \leq \|x_{T_{0}} + h_{T_{0}}\|_{1} + \|x_{T_{0}^{c}} + h_{T_{0}^{c}}\|_{1}$$

$$& = \|x + h\|_{1} = \|x^{\#}\|_{1}$$

$$& \leq \|x\|_{1}$$

$$& = \|x_{T_{0}}\|_{1} + \|x_{T_{0}^{c}}\|_{1}, \end{aligned}$$

so
$$||h_{T_0^c}||_1 \le ||h_{T_0}||_1 + O(\sqrt{k\eta}).$$

Bounding the Tail

Theorem: $||h_{T_{01}}^{c}||_{2} \le O(||h_{T_{01}}||_{2} + \eta).$

Proof: Markov: $j \cdot |y|_{(j)} \le ||y||_1$, so $|h_{T_0^c}|_{(j)} \le ||h_{T_0^c}||_1/j$.

Lhus

$$\left\|h_{T_{01}^{c}}\right\|_{2}^{2} \leq \left\|h_{T_{0}^{c}}\right\|_{1}^{2} \sum_{j=M+1}^{d} \frac{1}{j^{2}} \leq \left\|h_{T_{0}^{c}}\right\|_{1}^{2}/M.$$

Combined with ℓ^1 Concentration,

$$||h_{T_{01}^c}||_2^2 \le O((||h_{T_0}||_1/\sqrt{M}+\eta)^2) \le O((||h_{T_0}||_2+\eta)^2).$$

Bounding the Head

Theorem: $||h_{T_{01}}||_2 \le O(\eta)$.

terms after the first k. Proof: For j > 0, let T_j be the support of j'th largest set of M

$$0 = \|\Phi(x^{\#} - x)\|_{2} = \|\Phi h\|_{2}$$

$$\geq \|\Phi h_{T_{01}}\|_{2} - \left\|\sum_{j\geq 2} \Phi h_{T_{j}}\right\|_{2}$$

$$\geq \|\Phi h_{T_{01}}\|_{2} - \sum_{j\geq 2} \|\Phi h_{T_{j}}\|_{2}$$

$$\approx \|h_{T_{01}}\|_{2} - \sum_{j\geq 2} \|h_{T_{j}}\|_{2}.$$

Need to bound $\sum_{j\geq 2} ||h_{T_j}||_2$ above.

Bounding the Head

 $|h_{T_{j+1}}| \le ||h_{T_j}||_1/M$, so $||h_{T_{j+1}}||_2^2 \le ||h_{T_j}||_1^2/M$. (Note: Tight 1/M factor in 1 to 2 norm achieved by j to j+1.) Thus Each term in T_{j+1} is smaller than the average term in T_j ,

$$\sum_{j\geq 2} \|h_{T_{j}}\|_{2} \leq \sum_{j\geq 1} \|h_{T_{j}}\|_{1} / \sqrt{M}$$

$$= \|h_{T_{0}}\|_{1} / \sqrt{M}$$

$$\leq \|h_{T_{0}}\|_{1} / \sqrt{M} + O(\eta)$$

$$\leq \sqrt{k} / M (\|h_{T_{0}}\|_{2} + O(\eta))$$

$$\leq \sqrt{k} / M (\|h_{T_{01}}\|_{2} + O(\eta)).$$

Thus
$$||h_{T_{01}}||_2 \le \sqrt{k/M} (||h_{T_{01}}||_2 + \eta) \le (1/2) (||h_{T_{01}}||_2 + \eta)$$
, so $||h_{T_{01}}||_2 \le O(\eta)$.

HHS algorithm

Co-design matrix special and decoding algorithm.

Faster decoding: time k^2 poly $(\log(d)/\epsilon)$.

Fast Estimation

Have:

- Set A of positions in signal x.
- Measurements Φx , for random DFT-row-submatrix Φ .

Want:

- Estimate \widetilde{x}_A for x_A with
- $\|\widetilde{x}_A x_A\|_2 \le \|x x_A\|_2 + k^{-1/2} \|x x_A\|_1.$

Estimator

 $\widetilde{x}_A = \Phi_A^+(\Phi x)$ (Least squares).

$$\widetilde{x}_A = \left(\begin{array}{c} \Phi_A^+ \\ \end{array}\right) \cdot \left(\begin{array}{c} \Phi_A \\ \end{array}\right) \left(\begin{array}{c} x_A \\ \end{array}\right)$$

Get: For all x, $\|\Phi x\|_2 \le O(\|x\|_2 + k^{-1/2} \|x\|_1)$.

Proof of correctness: Similar to Compressed Sensing.

kpolylog $(d) \times k$ polylog(d) matrix; time k^2 polylog(d).

On to Identification

How to find good candidate set of positions?

- Isolation
- Noise Reduction

HHS Algorithm, Overview

- Assume limited dyanmic range: $||x||_2 \le d^{\log(d)} ||E_{\text{opt}}||_1$.
- ♦ Previous work provides preprocessing step.
- While $||x||_2 > (\epsilon/\sqrt{k}) ||E_{\text{opt}}||_1$, reduce $||x||_2$ by factor 2.
- ♦ Identify some spikes
- ♦ Estimate values.
- \diamondsuit ... reduce $||x||_2$ by a constant factor.

T T S

Our focus:

- $\approx q$ spikes with magnitude $\approx 1/t$
- Noise $||E_{\text{opt}}||_1 = ||\nu||_1 = 1$.

(Try all q's and t's in a geometric progression.)

Double Hashing

Have: q spikes at magnitude 1/t; noise 1.

Double hashing:

- Each position goes to 1 group among q.
- Within each group, each position expects to go to t/q groups among $(t/q)^2$.

(Some log factors suppressed.)

First Hashing

Have: q spikes at magnitude 1/t; noise 1.

Throw positions into $\approx q$ buckets, by Φ . Repeat $\log(d)$ times. Except with prob $e^{-q \log(d)} = \binom{d}{q}^{-1}$,

• $\Omega(q)$ spikes are isolated from other spikes

one spike at 1/t. Take union bound over all $\binom{d}{q}$ possible configurations of spikes. Get

Noise, Part I

Have one spike at 1/t. Noise?

We'll show $\|\Phi E_{\text{opt}}\|_1 \le \|E_{\text{opt}}\|_1$. (Next slide.)

- Property of Φ ; no union bound over $E_{\rm opt}$.
- At most n/10 of n buckets get noise more than $(10/n) ||E_{\text{opt}}||_1 \approx (1/q) ||E_{\text{opt}}||.$

Get 1 spike at 1/t and noise 1/q.

• Need further q/t factor of noise reduction.

Noise, Part I, Illustrated

Throw d positions into $n = q \log(d)$ buckets, by Φ .

- Want $\|\Phi E_{\text{opt}}\|_{1} \le \|E_{\text{opt}}\|_{1}$; we'll show $\|\Phi x\|_{1} \le \|x\|_{1}$ for all x.
- At most n/10 buckets get noise more than $(10/n) \|E_{\text{opt}}\|_1 \approx (1/q) \|E_{\text{opt}}\|.$

Have 1 spike at 1/t; noise $\|\nu\|_1 \le 1/q$.

Use $r = (t/q)^2$ rows of Bernoulli(q/t).

$$\begin{pmatrix} \downarrow & \downarrow & \begin{pmatrix} 1/dq \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/dq \\ 1/dq \\ 1/dq \end{pmatrix}$$

Have 1 spike at 1/t; noise $\|\nu\|_1 \le 1/q$.

Use $r = (t/q)^2$ rows of Bernoulli(q/t).

$$\begin{pmatrix} \downarrow & \downarrow & \begin{pmatrix} 1/dq \\ 1/t \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/dq \\ 1/dq \\ 1/dq \\ 1/dq \\ 1/dq \\ 1/dq \\ 1/dq \end{pmatrix}$$

Our spike survives $r' = r \cdot (q/t) = t/q$ times.

Have 1 spike at 1/t; noise $\|\nu\|_1 \le 1/q$.

Use $r = \widetilde{O}((t/q)^2)$ rows of Bernoulli(q/t).

$$\begin{pmatrix} 1/dq \\ 1/dq \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/dq \\ 1/d$$

- Our spike survives $r' = r \cdot (q/t) = t/q$ times.
- column. On surviving submatrix, expect $r' \cdot (q/t) = \text{one 1 per other}$

Have 1 spike at 1/t; noise $\|\nu\|_1 \le 1/q$.

Except with prob $1/d^3$ (with cost factor $O(\log(d))$),

- Our spike survives $r' = r \cdot (q/t) = t/q$ times.
- In surviving submatrix, $r' \cdot (q/t) = \text{one 1 per each other}$

Take union bound over d spikes and d matrix columns.

For any noise $\|\nu\|_1 = 1/q$, some row gets average noise, (1/q)/r' = 1/t.

Can recover spike of magnitude 1/t from noise 1/(2t).

Number of Measurements

Number of measurements: $q(t/q)^2 \log(d) \approx t^2/q$, for

- First hashing (q rows)
- Second hashing $((t/q)^2 \text{ rows})$
- Bit tests $(\log(d) \text{ rows})$
- (Several!) omitted factors of $\log(d)$ and $1/\epsilon$.

Note: $q/t^2 = ||s||_2^2 > (k^{-1/2} ||E_{\text{opt}}||_1)^2 = 1/k$.

So number of measurements is $t^2/q \le k$.

Recap

New compressed sensing/heavy hitter algorithms that get

- Appropriate error
- Universal guarantee

Optimal number of measurements (up to log factors)

Decoding time poly(k log(d))

Efficient pseudorandom constructions suffice.